Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Transl Med ; 15(692): eade9078, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: covidwho-2292152

RESUMEN

The best assay or marker to define mRNA-1273 vaccine-induced antibodies as a correlate of protection (CoP) is unclear. In the COVE trial, participants received two doses of the mRNA-1273 COVID-19 vaccine or placebo. We previously assessed IgG binding antibodies to the spike protein (spike IgG) or receptor binding domain (RBD IgG) and pseudovirus neutralizing antibody 50 or 80% inhibitory dilution titer measured on day 29 or day 57, as correlates of risk (CoRs) and CoPs against symptomatic COVID-19 over 4 months after dose. Here, we assessed a new marker, live virus 50% microneutralization titer (LV-MN50), and compared and combined markers in multivariable analyses. LV-MN50 was an inverse CoR, with a hazard ratio of 0.39 (95% confidence interval, 0.19 to 0.83) at day 29 and 0.51 (95% confidence interval, 0.25 to 1.04) at day 57 per 10-fold increase. In multivariable analyses, pseudovirus neutralization titers and anti-spike binding antibodies performed best as CoRs; combining antibody markers did not improve correlates. Pseudovirus neutralization titer was the strongest independent correlate in a multivariable model. Overall, these results supported pseudovirus neutralizing and binding antibody assays as CoRs and CoPs, with the live virus assay as a weaker correlate in this sample set. Day 29 markers performed as well as day 57 markers as CoPs, which could accelerate immunogenicity and immunobridging studies.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , COVID-19 , Humanos , Eficacia de las Vacunas , COVID-19/prevención & control , Anticuerpos Neutralizantes , Inmunoglobulina G , Anticuerpos Antivirales
2.
NPJ Vaccines ; 8(1): 36, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2251837

RESUMEN

In the phase 3 trial of the AZD1222 (ChAdOx1 nCoV-19) vaccine conducted in the U.S., Chile, and Peru, anti-spike binding IgG concentration (spike IgG) and pseudovirus 50% neutralizing antibody titer (nAb ID50) measured four weeks after two doses were assessed as correlates of risk and protection against PCR-confirmed symptomatic SARS-CoV-2 infection (COVID-19). These analyses of SARS-CoV-2 negative participants were based on case-cohort sampling of vaccine recipients (33 COVID-19 cases by 4 months post dose two, 463 non-cases). The adjusted hazard ratio of COVID-19 was 0.32 (95% CI: 0.14, 0.76) per 10-fold increase in spike IgG concentration and 0.28 (0.10, 0.77) per 10-fold increase in nAb ID50 titer. At nAb ID50 below the limit of detection (< 2.612 IU50/ml), 10, 100, and 270 IU50/ml, vaccine efficacy was -5.8% (-651%, 75.6%), 64.9% (56.4%, 86.9%), 90.0% (55.8%, 97.6%) and 94.2% (69.4%, 99.1%). These findings provide further evidence towards defining an immune marker correlate of protection to help guide regulatory/approval decisions for COVID-19 vaccines.

4.
Nat Commun ; 14(1): 331, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: covidwho-2185838

RESUMEN

In the PREVENT-19 phase 3 trial of the NVX-CoV2373 vaccine (NCT04611802), anti-spike binding IgG concentration (spike IgG), anti-RBD binding IgG concentration (RBD IgG), and pseudovirus 50% neutralizing antibody titer (nAb ID50) measured two weeks post-dose two are assessed as correlates of risk and as correlates of protection against COVID-19. Analyses are conducted in the U.S. cohort of baseline SARS-CoV-2 negative per-protocol participants using a case-cohort design that measures the markers from all 12 vaccine recipient breakthrough COVID-19 cases starting 7 days post antibody measurement and from 639 vaccine recipient non-cases. All markers are inversely associated with COVID-19 risk and directly associated with vaccine efficacy. In vaccine recipients with nAb ID50 titers of 50, 100, and 7230 international units (IU50)/ml, vaccine efficacy estimates are 75.7% (49.8%, 93.2%), 81.7% (66.3%, 93.2%), and 96.8% (88.3%, 99.3%). The results support potential cross-vaccine platform applications of these markers for guiding decisions about vaccine approval and use.


Asunto(s)
COVID-19 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Inmunoglobulina G , SARS-CoV-2 , Eficacia de las Vacunas , Ensayos Clínicos Fase III como Asunto
5.
J Cell Biol ; 221(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2097224

RESUMEN

Viruses co-opt host proteins to carry out their lifecycle. Repurposed host proteins may thus become functionally compromised; a situation analogous to a loss-of-function mutation. We term such host proteins as viral-induced hypomorphs. Cells bearing cancer driver loss-of-function mutations have successfully been targeted with drugs perturbing proteins encoded by the synthetic lethal (SL) partners of cancer-specific mutations. Similarly, SL interactions of viral-induced hypomorphs can potentially be targeted as host-based antiviral therapeutics. Here, we use GBF1, which supports the infection of many RNA viruses, as a proof-of-concept. GBF1 becomes a hypomorph upon interaction with the poliovirus protein 3A. Screening for SL partners of GBF1 revealed ARF1 as the top hit, disruption of which selectively killed cells that synthesize 3A alone or in the context of a poliovirus replicon. Thus, viral protein interactions can induce hypomorphs that render host cells selectively vulnerable to perturbations that leave uninfected cells otherwise unscathed. Exploiting viral-induced vulnerabilities could lead to broad-spectrum antivirals for many viruses, including SARS-CoV-2.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Poliovirus , Proteínas del Núcleo Viral , Humanos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mutaciones Letales Sintéticas , Replicación Viral , Regulación Viral de la Expresión Génica , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/metabolismo , Interacciones Huésped-Patógeno
6.
Science ; 375(6576): 43-50, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1649486

RESUMEN

In the coronavirus efficacy (COVE) phase 3 clinical trial, vaccine recipients were assessed for neutralizing and binding antibodies as correlates of risk for COVID-19 disease and as correlates of protection. These immune markers were measured at the time of second vaccination and 4 weeks later, with values reported in standardized World Health Organization international units. All markers were inversely associated with COVID-19 risk and directly associated with vaccine efficacy. Vaccine recipients with postvaccination 50% neutralization titers 10, 100, and 1000 had estimated vaccine efficacies of 78% (95% confidence interval, 54 to 89%), 91% (87 to 94%), and 96% (94 to 98%), respectively. These results help define immune marker correlates of protection and may guide approval decisions for messenger RNA (mRNA) COVID-19 vaccines and other COVID-19 vaccines.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/prevención & control , SARS-CoV-2/inmunología , Eficacia de las Vacunas , Adolescente , Adulto , Anciano , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Ensayos Clínicos Fase III como Asunto , Femenino , Humanos , Inmunogenicidad Vacunal , Masculino , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Sensibilidad y Especificidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
7.
Viruses ; 14(1)2021 12 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1580415

RESUMEN

The emergence and establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of interest (VOIs) and variants of concern (VOCs) highlight the importance of genomic surveillance. We propose a statistical learning strategy (SLS) for identifying and spatiotemporally tracking potentially relevant Spike protein mutations. We analyzed 167,893 Spike protein sequences from coronavirus disease 2019 (COVID-19) cases in the United States (excluding 21,391 sequences from VOI/VOC strains) deposited at GISAID from 19 January 2020 to 15 March 2021. Alignment against the reference Spike protein sequence led to the identification of viral residue variants (VRVs), i.e., residues harboring a substitution compared to the reference strain. Next, generalized additive models were applied to model VRV temporal dynamics and to identify VRVs with significant and substantial dynamics (false discovery rate q-value < 0.01; maximum VRV proportion >10% on at least one day). Unsupervised learning was then applied to hierarchically organize VRVs by spatiotemporal patterns and identify VRV-haplotypes. Finally, homology modeling was performed to gain insight into the potential impact of VRVs on Spike protein structure. We identified 90 VRVs, 71 of which had not previously been observed in a VOI/VOC, and 35 of which have emerged recently and are durably present. Our analysis identified 17 VRVs ~91 days earlier than their first corresponding VOI/VOC publication. Unsupervised learning revealed eight VRV-haplotypes of four VRVs or more, suggesting two emerging strains (B1.1.222 and B.1.234). Structural modeling supported a potential functional impact of the D1118H and L452R mutations. The SLS approach equally monitors all Spike residues over time, independently of existing phylogenic classifications, and is complementary to existing genomic surveillance methods.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Secuencia de Aminoácidos , COVID-19/epidemiología , Haplotipos , Humanos , Modelos Moleculares , Modelos Estadísticos , Mutación , SARS-CoV-2/clasificación , SARS-CoV-2/aislamiento & purificación , Análisis Espacio-Temporal , Glicoproteína de la Espiga del Coronavirus/química , Estados Unidos/epidemiología , Aprendizaje Automático no Supervisado
8.
Sci Rep ; 11(1): 23921, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1585804

RESUMEN

Vaccine-induced neutralizing antibodies (nAbs) are key biomarkers considered to be associated with vaccine efficacy. In United States government-sponsored phase 3 efficacy trials of COVID-19 vaccines, nAbs are measured by two different validated pseudovirus-based SARS-CoV-2 neutralization assays, with each trial using one of the two assays. Here we describe and compare the nAb titers obtained in the two assays. We observe that one assay consistently yielded higher nAb titers than the other when both assays were performed on the World Health Organization's anti-SARS-CoV-2 immunoglobulin International Standard, COVID-19 convalescent sera, and mRNA-1273 vaccinee sera. To overcome the challenge this difference in readout poses in comparing/combining data from the two assays, we evaluate three calibration approaches and show that readouts from the two assays can be calibrated to a common scale. These results may aid decision-making based on data from these assays for the evaluation and licensure of new or adapted COVID-19 vaccines.


Asunto(s)
Anticuerpos Neutralizantes/sangre , COVID-19/inmunología , Pruebas de Neutralización/normas , SARS-CoV-2/inmunología , Vacuna nCoV-2019 mRNA-1273/inmunología , Anticuerpos Antivirales/sangre , COVID-19/sangre , Toma de Decisiones Clínicas , Ensayos Clínicos como Asunto , Pruebas Diagnósticas de Rutina , Humanos , Pruebas de Neutralización/métodos , Organización Mundial de la Salud
9.
Nat Biotechnol ; 40(1): 30-41, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1585828

RESUMEN

Gaining a better understanding of the immune cell subsets and molecular factors associated with protective or pathological immunity against severe acute respiratory syndrome coronavirus (SARS-CoV)-2 could aid the development of vaccines and therapeutics for coronavirus disease 2019 (COVID-19). Single-cell technologies, such as flow cytometry, mass cytometry, single-cell transcriptomics and single-cell multi-omic profiling, offer considerable promise in dissecting the heterogeneity of immune responses among individual cells and uncovering the molecular mechanisms of COVID-19 pathogenesis. Single-cell immune-profiling studies reported to date have identified innate and adaptive immune cell subsets that correlate with COVID-19 disease severity, as well as immunological factors and pathways of potential relevance to the development of vaccines and treatments for COVID-19. For facilitation of integrative studies and meta-analyses into the immunology of SARS-CoV-2 infection, we provide standardized, download-ready versions of 21 published single-cell sequencing datasets (over 3.2 million cells in total) as well as an interactive visualization portal for data exploration.


Asunto(s)
COVID-19/inmunología , COVID-19/patología , Visualización de Datos , Conjuntos de Datos como Asunto , Inmunidad Innata , SARS-CoV-2/inmunología , Análisis de la Célula Individual , Animales , COVID-19/genética , Análisis de Datos , Humanos , Transcriptoma
10.
Ann Intern Med ; 174(8): 1118-1125, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1181776

RESUMEN

Multiple candidate vaccines to prevent COVID-19 have entered large-scale phase 3 placebo-controlled randomized clinical trials, and several have demonstrated substantial short-term efficacy. At some point after demonstration of substantial efficacy, placebo recipients should be offered the efficacious vaccine from their trial, which will occur before longer-term efficacy and safety are known. The absence of a placebo group could compromise assessment of longer-term vaccine effects. However, by continuing follow-up after vaccination of the placebo group, this study shows that placebo-controlled vaccine efficacy can be mathematically derived by assuming that the benefit of vaccination over time has the same profile for the original vaccine recipients and the original placebo recipients after their vaccination. Although this derivation provides less precise estimates than would be obtained by a standard trial where the placebo group remains unvaccinated, this proposed approach allows estimation of longer-term effect, including durability of vaccine efficacy and whether the vaccine eventually becomes harmful for some. Deferred vaccination, if done open-label, may lead to riskier behavior in the unblinded original vaccine group, confounding estimates of long-term vaccine efficacy. Hence, deferred vaccination via blinded crossover, where the vaccine group receives placebo and vice versa, would be the preferred way to assess vaccine durability and potential delayed harm. Deferred vaccination allows placebo recipients timely access to the vaccine when it would no longer be proper to maintain them on placebo, yet still allows important insights about immunologic and clinical effectiveness over time.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Ensayos Clínicos Fase III como Asunto/normas , Ensayos Clínicos Controlados Aleatorios como Asunto/normas , Ensayos Clínicos Fase III como Asunto/métodos , Estudios Cruzados , Método Doble Ciego , Esquema de Medicación , Estudios de Seguimiento , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Proyectos de Investigación/normas , SARS-CoV-2 , Resultado del Tratamiento
11.
Ann Intern Med ; 174(2): 221-228, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-890662

RESUMEN

Several vaccine candidates to protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 (COVID-19) have entered or will soon enter large-scale, phase 3, placebo-controlled randomized clinical trials. To facilitate harmonized evaluation and comparison of the efficacy of these vaccines, a general set of clinical endpoints is proposed, along with considerations to guide the selection of the primary endpoints on the basis of clinical and statistical reasoning. The plausibility that vaccine protection against symptomatic COVID-19 could be accompanied by a shift toward more SARS-CoV-2 infections that are asymptomatic is highlighted, as well as the potential implications of such a shift.


Asunto(s)
Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Infecciones Asintomáticas , COVID-19/diagnóstico , Prueba de COVID-19 , Vacunas contra la COVID-19/efectos adversos , Ensayos Clínicos Fase III como Asunto/métodos , Humanos , SARS-CoV-2 , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA